Reconstruction of the Late-Quaternary climate change using magnetic susceptibility of Saadabad-Gorgan loess deposits
Authors
Abstract:
Introduction One of the processes of the Quaternary era is the glacial and interglacial periods. In the glacial period, loesses deposited and in the interglacial period, Paleosoils were formed. The northern part of Iran is geographically the same as countries such as China, a large part of which has been covered with loess sediments during the Pleistocene glacial period. Loess sediments in northern Iran reflect several cycles of climate changes and the evolution of the earthchr('39')s appearance for the middle to late Quaternary period. In this region, the Loes-Paleosoil sequences are one of the most important terrestrial archives of climate change and provide a bridge between Southeast European and Central Asian loess sediments. To reconstruct paleoclimate changes, magnetic susceptibility is used as a climate proxy. The high magnitude of the magnetic susceptibility indicates the large volume of magnetic minerals. Chemical weathering causes the formation of magnetic minerals such as magnetite and maghemitite. These minerals are abundant in Paleosoils and can be determined by analyzing the magnetic susceptibility of Loess and Paleosoils. The magnetic properties of the Loess-Paleosoil sequence are considered to be evidence of paleo precipitation and weathering. Study area Geographical location of Saadabad sedimentary section in the northern region is 36° 49chr('39') N and 54° 22chr('39') E, at an altitude of 140 m a.s.l. Saadabad sedimentary section is located in the construction zone of Alborz and in terms of the main sedimentary-structural zones of Iran is part of the southern Caspian coast. This zone includes areas, which are located in the north of Alborz fault and block the Caspian Sea coast on the coast of Iran and are covered to the east with thick layers of loess. Methods In the field work that was carried out in May 2017, after determining the exact location of the sedimentary section, sampling was performed. Before sampling, aerated sedimentary layers are dug up and removed to reveal fresh deposits. Then, using the meter, the layers were divided into 10 cm intervals. 92 samples were prepared at 10 cm intervals from the sequence. Measurement of natural residue magnetic (NRM), by the model rotating magnetometer (JR-6A), and measurement of magnetic susceptibility by magnetic intensity measuring device, in the magnetometry laboratory of the Geological Survey of Iran. Results Table 1 shows the measured values of the magnetic parameters. Due to the length of the table, only a few examples are given in the table. Since high magnetic susceptibility can indicate a greater concentration of magnetic minerals in the sample, it can be concluded that the paleosils of the sequence studied have more magnetic materials than the loesses, which are inside the soils. They can be the result of podogenesis processes. Because rising temperatures and humidity cause soil erosion processes and increase oxidation and thus increase the amount of magnetic materials, it can be concluded that in paleosoils with higher magnetic susceptibility, warm and humid climates dominate in the environment. Micromorphological studies of directional clay layers, Fe-Mn hydroxide, show that the palaeosoil of section 5 is moderate to well developed. As the climate changes to higher temperatures and higher humidity, weathering and pedogenesis also increase, leading to the development of a pedogenic oxidation environment as a result this produce the formation of tiny magnetic grains such as maghemite and magnetite in this oxidizer environment and thus increases the magnetic susceptibility. In Saadabad, the high amount of xlf along with the high percentage of xfd suggests that many of the ultra-fine maghemite and magentite grains may have been formed during pedogenesis under a long, humid, warm climate. The findings show that the different behaviors of magnetic susceptibility between the loess of the drier and wetter areas are mainly caused by their different pathogenic environments, which in turn are related to local topography and climatic conditions. Conclusions High levels of xlf and xfd indicate high precipitation during the formation of Paleosoils. Post-sedimentation processes may increase the amount of MS by producing new ferromagnetic minerals during the oxidation of wheathered soils, and may also reduce the amount of MS by reducing the processes. The clay material in which the soil is made is the main factor influencing the change in magnetic mineralogy and magnetic susceptibility. This study also shows that magnetic susceptibility is a complex parameter and its use as a precipitation control has certain limitations and conditions, and when the magnetic properties of the loesses are used for paleo climate reconstruction, more attention should be paid to topography, environment. Sediment and weather factors.
similar resources
the record of late quaternary climate change on magnetic susceptibility of azadshahr loess
expanded abstract introduction in general, loess sediments are one of the most widespread forms of eolian sediments. during the past few decades, loess stratigraphy studies played key role in global climate changes. these sediments are usually yellowish in color and silt makes 70 to 90 percent of it volume. in iran, loesses outcrop often in northeast of south caspian sea. the previous studies r...
full textrecords of late quaternary climate changes in magnetic susceptibility of azadshahr loess
introduction in general, loess sediments are one of the most widespread forms of aeolian sediments. during the past few decades, loess stratigraphy studies played key role in the investigation about global climate changes. these sediments are usually yellowish in color and silt makes 70 to 90 percent of its volume. in iran, loesses outcrop are often in northeast part of south caspian sea. the p...
full textReconstruction and study of late Quaternary climate change in southeastern part of Caspian Sea
Introduction Reconstruction of past climate change can provide us valuable information about the time, scale, and details of climate changes. For reconstruction of late quaternary cl...
full textQuaternary Loess Deposits of Wadi Gaza in the Middle of the Gaza Strip, Palestine
The Gaza Strip constitutes the south-western part of Palestine. The loess deposits were observed in the Middle and Gaza Governorates in Gaza Strip. This study carried out in the Wadi Gaza where Quaternary loess well crops out. Twenty three samples were collected from nine observation sites in the study area, and performed a textural, calcium carbonate and organic matter content studies. The loe...
full textclimate change in gavkhouni basin at the late quaternary phase
introduction in spite of its short time period compared with the earth long evolution history, quaternary has had a significant effect on the final formation of the landforms and vital resources. it is the final analysis of these levels and fully dependent on the earth genetic diseases and, above all, significant climate changes that have happened during this period. gavkhouni basin morphologic...
full textclimate change in gavkhouni basin at the late quaternary phase*
introduction in spite of its short time period compared to the earth evolution history and formation, quaternary has had a significant effect on the final formation of the land form and vital resources. it is the final analysis of these levels and fully dependent sources to the earth genetic diseases and, above all, significant climate changes that have happened during this period; gavkhouni ba...
full textMy Resources
Journal title
volume 5 issue 3
pages 279- 300
publication date 2019-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023